
Haoyi Zeng

Formalizing Hardware-Software
Contracts in

Thomas Bourgeat

29.11.2024

Hardware

Some Scary News

Spectre Attacks

Timing side channels

Speculative execution
+

if (x < size){
tmp = A[x]
out = B[tmp]
}

A Spectre Vulnerable program

Cannot access A[x]when x is out of bounds?

size of array A

Hardware

speculative
execution

(x < size) == true

rollback!

access “secret”
A[x]

leak A[x] via
data cache

How to formalize Spectre vulnerabilities?

How to model time without talking about time

How to formalize Spectre vulnerabilities?

Program is speculative non-interference (SNI): , : states,π ∀σ σ′

Compare leakage without and with speculation

⟹

Branch predictor

Speculative Execution

Sequence execution with events

Speculative execution with events

if (x < size){
tmp = A[x]
out = B[tmp]

}

σ1 = A + x ↦ a
σ2 = A + x ↦ b

𝗃𝗎𝗆𝗉 𝖾𝗇𝖽𝗅𝗈𝖺𝖽 (A + x) ⋅ 𝗅𝗈𝖺𝖽 (a) ⋅

𝗃𝗎𝗆𝗉 𝖾𝗇𝖽𝗅𝗈𝖺𝖽 (A + x) ⋅ 𝗅𝗈𝖺𝖽 (b) ⋅𝗌𝗍𝖺𝗋𝗍 ⋅

𝗌𝗍𝖺𝗋𝗍 ⋅=
=

σ1

σ2

𝗃𝗎𝗆𝗉 𝖾𝗇𝖽

𝗃𝗎𝗆𝗉 𝖾𝗇𝖽𝗌𝗍𝖺𝗋𝗍 ⋅

𝗌𝗍𝖺𝗋𝗍 ⋅=
=

σ1

σ2

Demo
Spectre-v1.lean

Speculative Execution

Develop an abstract model of
hardware leakage

But that’s not true….

There can be a huge gap between

 the hardware and the model

Key idea

Hardware Contract

⟹

⟹

Hardware Semantics

⟹

Hardware Software Contracts

= Execution Mode Observer Mode×

=
Observer Mode

Execution Mode {Seq, Spec, …}

= {Arch, CT, …}

: 𝗉𝗋𝗈𝗀 → 𝗌𝗍𝖺𝗍𝖾 → 𝖫𝗂𝗌𝗍 𝖾𝗏𝖾𝗇𝗍𝗌

Using Hardware-Software Contracts
From software side

⟹

if (x < size){
tmp = A[x]
out = B[tmp]
}

Spectre attacks

¬𝖲𝖺𝗍(φp) ⇒ 𝖲𝖭𝖨(p)

p φp

Let’s do everything using proof assistants

One more reason:

~ 80 pages

Using Hardware-Software Contracts
From hardware side

⟹

: 𝗉𝗋𝗈𝗀 → 𝗁𝖺𝗋𝖽𝗐𝖺𝗋𝖾_𝗌𝗍𝖺𝗍𝖾 → 𝖫𝗂𝗌𝗍 𝖾𝗏𝖾𝗇𝗍𝗌

Given any
Cache Branch predictor Pipeline Scheduler

 := fetch execute retire fetch execute retireS𝗌𝖾𝗊 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅
Definition (Sequence scheduler)

 := fetch fetch execute fetch execute retireS𝗈𝗈𝗈 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅
Definition (Out-of-order scheduler)

→𝖿𝖾𝗍𝖼𝗁

→𝖾𝗑𝖾𝖼𝗎𝗍𝖾→𝗋𝖾𝗍𝗂𝗋𝖾

Formalizing Hardware-Software Contracts

Theorem 1 (Contract Satisfaction 1):

For any hardware model instantiated by arbitrary cache,
branch predictor, and scheduler, we have:

⊨

Goal

⟹

⟹

Conclusion: For any program , if Spectector/Kawa shows that

 is SNI, then is secure against side-channel attacks on this

machine model

π
π π

Proof by induction

hardware step

on contracts step

seqsat.lean

with an invariant

⊨

Because the scheduler
is boring

Fact 1 (Contract Satisfaction 1):

For any hardware model instantiated by arbitrary cache,
branch predictor. If the scheduler is , we have:S𝗌𝖾𝗊

Future Work

Hardware Contract

1. Challenge of contract satisfaction proof
2. A program logic for proving SNI

(Relational Hoare Logic, Hyper Hoare Logic)

1. More realistic examples (Model Checking + Proof Assistant)

2. Secure compilation

Full stack verification

