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ABSTRACT
In the setting of constructive reverse mathematics, we analyse the

downward Löwenheim-Skolem (DLS) theorem of first-order logic,

stating that every infinite model has a countable elementary sub-

model. Refining the well-known equivalence of the DLS theorem

to the axiom of dependent choice (DC) over classical base theories,

our constructive approach allows for several finer logical decompo-

sitions: Just assuming countable choice (CC), the DLS theorem is

equivalent to the conjunction of DC with a newly identified frag-

ment of the excluded middle (LEM) that we call the blurred drinker

paradox (BDP). Further without CC, the DLS theorem is equivalent

to the conjunction of BDP with similarly blurred weakenings of DC

and CC. Independent of their connection with the DLS theorem,

we also study BDP and the blurred choice axioms on their own, for

instance by showing that BDP is LEM without a contribution of

Markov’s principle and that blurred DC is DC without a contribu-

tion of CC. All definitions and theorems of the paper have been

mechanised with the Coq proof assistant.
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1 INTRODUCTION
The Löwenheim-Skolem theorem

1
is a central result about first-

order logic, practically entailing that the formalism is incapable

of distinguishing different infinite cardinalities. In particular its

so-called downward part, stating that every infinite model can be

turned into a countably infinite model with otherwise the exact

same behaviour, can be considered surprising or even paradoxical:
2

1
Usually attributed to Löwenheim [26] and Skolem [36] by name, but credit is also

due to Maltsev [27] who in turn credits Tarski.

2
Discovered and discussed by Skolem [37]. See also the discussion by McCarty and

Tennant [31] for a constructivist perspective.
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even axiom systems like ZF set theory, concerned with uncountably

large sets like the reals or their iterated power sets, admit countable

interpretations. This seeming contradiction in particular and its

metamathematical relevance in general led to an investigation of the

exact assumptions under which the downward Löwenheim-Skolem

(DLS) theorem applies.

From the perspective of (classical) reverse mathematics [15, 35],

there is a definite answer: the DLS theorem is equivalent to the

dependent choice axiom (DC), a weak form of the axiom of choice,

stating that there is a path through every total relation [3, 12, 22].

To argue the first direction, one can organise the usually iterative

construction of the countable submodel such that a single appli-

cation of DC yields the desired result. For the converse direction,

one uses the DLS theorem to turn a given total relation 𝑅 into a

countable sub-relation 𝑅′, applies the classically provable axiom

of countable choice (CC) to obtain a path 𝑓 ′ through 𝑅′, which is

then reflected back as a path 𝑓 through 𝑅. In total, that is:

DLS ↔ DC

However, the classical answer is insufficient if one investigates

the computational content of theDLS theorem, i.e. the question how

effective the transformation of a model into a countable submodel

really is. A more adequate answer can be obtained by switching to

the perspective of constructive reverse mathematics [10, 20], which

is concernedwith the analysis of logical strength over a constructive

meta-theory, i.e. in particular without the law of excluded middle

(LEM), stating that 𝑝 ∨ ¬𝑝 for all propositions 𝑝 , and ideally also

without CC [33]. In that setting, finer logical distinctions become

visible and one can analyse the computational content of the DLS
theorem by investigating whether (1) it still follows from DC alone,

without any contribution of LEM, and (2) whether it still implies

the full strength of DC, without any contribution of CC:

DLS (+CC) ?↔ DC (+ LEM)
In this paper, after giving a fully constructive proof of a weak

form of the DLS theorem sharing the same computational content

as constructivised model existence theorems [14, 18], we observe

that neither (1) nor (2) is the case. Instead, we clarify which exact

fragment of LEM is needed on top of DC to prove the DLS theorem

and, conversely, which exact fragment of DC it implies.

Regarding (1), note that the DLS theorem requires LEM in the

form of the drinker paradox:
3
in every (non-empty) bar there is a

particular person, such that if that person drinks, then everybody

in the bar drinks. The classical explanation for that phenomenon is

simple, either everyone drinks anyway, in which case we can choose

just any person, or there is someone not drinking, in which case we

3
Polularised as a logic puzzle by Smullyan [38] and studied in relation to other princi-

ples of constructive mathematics by Escardó and Oliva [11].
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choose that person and obtain a contradiction to the assumption

they would drink. The role of the drinker paradox in the proof of the

DLS theorem is to ensure the constructed model correctly interprets

universal quantification:
4
given a formula ∀𝑥 . 𝜑 (𝑥) one can find a

special domain element 𝑎 such that 𝜑 (𝑎) implies ∀𝑥 . 𝜑 (𝑥), thereby
reducing a test over the whole domain to a test of a single point.

However, we observe that we do not need to know 𝑎 concretely but

that it is contained somewhere within the countable model we are

about to construct, more formally, that there is a countable subset

𝐴 such that ∀𝑎 ∈ 𝐴. 𝜑 (𝑎) implies ∀𝑥 . 𝜑 (𝑥). Seen computationally,

this means that we reduce testing over the whole domain to testing

only a countable part of it.

On a more abstract level, this observation corresponds to a con-

structively weaker form of the drinker paradox: in every bar, there

is a countable group, such that if everyone in this group drinks,

then everybody in the bar drinks. We call this principle the blurred
drinker paradox as it continues the bar situation at a later point

when everyone’s vision got blurred and clear identifications of per-

sons become impossible. That it corresponds to the DLS theorem
is suggestive since both statements in a sense collapse arbitrary to

countable cardinality and indeed we can show that, with CC still

assumed in the background, the DLS theorem is equivalent to the

conjunction of DC with the blurred drinker paradox. On top of this

equivalence, we study the principle (and its dual needed for existen-

tial quantification) in a more general setting with arbitrary blurring

cardinalities and in relation to other sub-classical non-constructive

principles, unveiling a hierarchy of classically hidden structure.

Turning to question (2), we observe that DC becomes under-

ivable from the DLS theorem if we further give up on CC in the

background. This suggests that the actual fragment of DC at play

is a weakening without the contribution of CC, i.e. a principle that

follows from DC but does not imply CC. By a deeper analysis of the

proof of the DLS theorem, we actually identify several weakenings

of DC that happen to include similar blurring techniques as in the

case of the blurred drinker paradox, again connected to the indistin-

guishability of countable and uncountable cardinalities. In particu-

lar, we show that the DLS theorem is equivalent to the conjunction

of a strong blurred form of DC and the blurred drinker paradox,

with the former further decomposing into a weaker blurred form

of DC conjoined with a blurred form of CC.

Orthogonal to its use for the constructive reverse analysis of the

DLS theorem, our discussion of blurred choice axioms contributes

to the constructive understanding of the logical structure of choice

principles in general, thereby complementing related work by Brede

and Herbelin [4]. For instance, we show that in the absence of CC,

the core of DC actually states that every total relation has a total

countable sub-relation or, alternatively, that every directed relation

has a directed countable sub-relation. These and similar classically

equivalent but constructively weaker reformulations of DC are in

visible connection to the DLS theorem.

Our resulting decomposition may then be depicted as

which states that DLS is equivalent to two independent compo-

nents of DC in addition to two independent components of LEM.

Note that the colour-coded abbreviations of all logical principles

4
Incidentally, a similar requirement is needed in Henkin-style completeness proofs [16],

however on the syntactic level of derivable formulas. Still, there is a close connection of

Henkin’s model construction and our favoured strategy to establish the DLS theorem.

+DLS ↔
BCC DDC

CCN

BDP BEP

MP

DC LEM

here and in the remainder of the text are hyperlinked with their def-

initions in Appendix A and that a more complete diagram showing

all logical connections is given in Appendix B.

While the present paper is written in a deliberately informal

way to comply with many systems of (higher-order) constructive

mathematics and to address a broad audience, we complement it

with a fully mechanised development using the Coq proof assis-

tant [40]. That is, all definitions and theorems have been formalised

in the concrete logical foundation underlying Coq such that the

correctness of all proofs can be machine-checked. The reasons we

do this and actually find it worthwhile are threefold: First, the

mechanisation guarantees that all constructions and arguments

are sound, which is especially helpful for intricate syntactical argu-

ments needed in the proof of the DLS theorem. Secondly, using a

proof assistant actually helped us identify the new non-constructive

principles at play by pointing to the constructions and proofs that

needed modification. Thirdly, as proving in Coq is programming,

the computational content of constructive proofs is made explicit:

for instance, the fully constructive proof of the weak DLS theorem

can in principle be executed to compute the constructed countable

submodel, even being extractable to other programming languages.

Contributions. The contributions of this paper are as follows:

• We introduce the blurred drinker paradox and blurred choice

axioms as natural families of logical principles in the con-

text of constructive reverse mathematics. To classify their

strength, among others we show that the blurred drinker

paradox is LEM without some contribution of Markov’s prin-

ciple (Fact 5.4) and that the blurred forms of DC are DC

without some contribution of CC (Corollary 7.6).

• Using these logical principles, we give precise constructive

decompositions of theDLS theorem: over CC, it is equivalent

to DC and the blurred drinker paradox (Corollary 6.5), and

without CC, the same equivalence holds for various blurrings

of DC and CC (Theorem 8.1). Moreover, to the best of our

knowledge we are the first to observe that a weak form of the

DLS theorem is fully constructive (Fact 3.1), as a by-product

of a known fully constructive model existence theorem [14,

18].

• The underlying proof strategy we use for the DLS theorem

(Theorem 3.5) is a streamlining of proofs usually found in

the literature: we construct a syntactic model and collect all

structural information in variable environments. Thereby

the proof relies neither on signature nor domain extensions

and is particularly suitable for computer mechanisation.
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• Our paper is accompanied by a Coq development,
5
ensuring

the correctness of all proofs and providing full formal detail,

such that the text may remain on a more accessible level.

For seamless integration, all definitions and theorems in

the PDF version of this paper are hyperlinked with HTML

documentation of the code.

• We correct an apparent oversight in the investigation of sub-

classical logical principles:
6
stated in an expressive higher-

order logic such as constructive type theory with quantifica-

tion over arbitrary types, the universal closures of the drinker

paradox, the existence principle, and the independence of

premise are all equivalent to LEM (Fact 2.2).

Outline. Section 2 provides an overview of some non-constructive

axioms and basic concepts of first-order logic. In Section 3, we

present three constructive versions of the DLS theorem of increas-

ing strength and, in Section 4, we reconstruct the classical equiva-

lence of theDLS theorem to DC. This equivalence is then refined by

introducing the blurred drinker paradox in Section 5, used in Sec-

tion 6 to replace the use of LEM, and by introducing blurred choice

axioms in Section 7, used in Section 8 to replace the use of DC.

We close with a discussion concerning the main results, the Coq

mechanisation, and future work in Section 9. Note that Sections 5

and 7 are written to be accessible for readers only interested in the

new logical principles and their decompositions, independent of

their use for the DLS theorem in the other sections.

2 PRELIMINARIES
Wework in a constructive meta-theory that we leave underspecified

to generalise over any concrete systems such as intuitionistic higher-

order arithmetics, intuitionistic or constructive set theories, or con-

structive type theories. Of course, one particular concretisation

we have in mind is the Calculus of inductive Constructions [8, 32]

implemented in the Coq proof assistant [40], so we lean towards

some type-theoretic notation and jargon.

On the logical level, we stipulate an impredicative collection P of
propositions with standard notation (⊥,⊤,¬,∧,∨,∀, ∃) to express

composite formulas and a means to include inductively defined

predicates. On the computational level, we assume collections like

N of natural numbers andB of Booleans, function spaces likeN→B,
and a means to include inductively defined collections.

We frequently use a Cantor pairing function encoding pairs

(𝑛,𝑚) : N2 as numbers ⟨𝑛,𝑚⟩ : N. We write 𝑓 ⟨𝑛,𝑚⟩ := . . . for

function definitions treating an input number as an encoded pair.

Given𝐴, if there are functions 𝑖 : 𝐴→N and 𝑗 : N→𝐴with 𝑗 (𝑖 𝑥)
for all 𝑥 : 𝑋 , then we say that𝐴 is countable, where we in particular

include finite 𝐴 to avoid speaking of at most countable models in

the formulations of the DLS theorem. Note that there are many

non-equivalent definitions of countability in constructive logic but

for our purposes any of them would do. Similarly, we represent

5
Submitted as ZIP folder together with this paper, please follow the instructions

in installation.txt to compile and check the code. The hyperlinks in this paper

pointing to the development also only work for the PDF contained in the ZIP folder,

as we refrain from storing the HTML files online for anonymity reasons.

6
For instance, a relevant file in the Coq standard library (https://coq.inria.fr/doc/

master/stdlib/Coq.Logic.ClassicalFacts.html) refers to both the drinker paradoxes and

the independence of premise as principles strictly weaker than LEM, which is only the

case if one fixes a domain in advance.

countable subsets as functions 𝑓 , 𝑔 : N→𝐴, and write 𝑓 ⊆ 𝑔 if for

every 𝑛 there is𝑚 with 𝑓 𝑛 = 𝑔𝑚 and 𝑓 ∪ 𝑔 : N→𝐴 for the subset

(𝑓 ∪ 𝑔) (2𝑛) := 𝑓 𝑛

(𝑓 ∪ 𝑔) (2𝑛 + 1) := 𝑔𝑛

satisfying expectable properties like 𝑓 ⊆ 𝑓 ∪ 𝑔 and 𝑔 ⊆ 𝑓 ∪ 𝑔.

Lastly, we call a predicate 𝑃 : 𝐴→P decidable if it coincides with
a Boolean function 𝑓 : 𝐴→B, i.e. if ∀𝑥 : 𝐴. 𝑃 𝑥 ↔ 𝑓 𝑥 = true. This
definition naturally generalises to relations 𝑅 : 𝐴→𝐵→P.

2.1 Constructive Reverse Mathematics
The idea of constructive reverse mathematics is to identify non-

constructive logical principles and their equivalences towell-known

theorems, thereby classifying logical strength and computational

content [5, 10, 20]. In preparation of upcoming similar results, we

reproduce some well-known connections of logical principles like

LEM := ∀𝑝 : P. 𝑝 ∨ ¬𝑝
LPO := ∀𝑓 : N→B. (∃𝑛. 𝑓 𝑛 = true) ∨ (∀𝑥 . 𝑓 𝑛 = false)
DP𝐴 := ∀𝑃 : 𝐴→P. ∃𝑥 . 𝑃 𝑥 → ∀𝑦. 𝑃 𝑦
EP𝐴 := ∀𝑃 : 𝐴→P. ∃𝑥 . (∃𝑦. 𝑃 𝑦) → 𝑃 𝑥

IP𝐴 := ∀𝑃 : 𝐴→P.∀𝑝 : P. (𝑝 → ∃𝑥 . 𝑃 𝑥) → ∃𝑥 . 𝑝 → 𝑃 𝑥

namely the law of excluded middle, the limited principle of om-

niscience, the drinker paradox, the existence principle, and the

independence of premise principle. In the situation of DP𝐴 for 𝑃 ,

we call the given 𝑥 the Henkin witness for 𝑃 , same for EP𝐴 which is

a dual variant of the drinker paradox. We write DP to denote DP𝐴
for all inhabited 𝐴, analogously for EP and IP, but state results in
the more localised form where possible.

Fact 2.1. The following statements hold:
1. Both DPN and EPN imply LPO.

2. EP𝐴 is equivalent to IP𝐴 .

Proof. For (1), assuming DPN and a function 𝑓 : N→B yields

some 𝑛 such that 𝑓 𝑛 = false implies 𝑓 𝑛′ = false for all 𝑛′. Then
the claim follows by case analysis of 𝑓 𝑛. The claim for EPN follows

analogously and (2) is straightforward, with the choice 𝑝 := ∃𝑦. 𝑃 𝑦
for the backwards direction. □

In contrast to the situation in first-order logic [42], the universal

closures of these principles in a higher-order meta-theory with

comprehension actually have the full strength of LEM:

Fact 2.2. LEM, DP, EP, and IP are equivalent.

Proof. That LEM implies the other principles is well-known.

As an example for the converse, assume DP and some 𝑝 : P. Using
DP for 𝐴 := {𝑏 : B | 𝑏 = false ∨ (𝑝 ∨ ¬𝑝)} and

𝑃 𝑏 :=

{
¬𝑝 if 𝑏 = true

⊤ otherwise

yields a Henkin witness 𝑏 : 𝐴 for 𝑃 . If 𝑏 = true, we directly obtain

𝑝∨¬𝑝 and if𝑏 = false, then we derive¬𝑝 as follows: On assumption

of 𝑝 we know that true is a member of 𝐴 and since 𝑃 𝑏 = ⊤, by the

Henkin property we obtain 𝑃 𝑏′ for all 𝑏′ : 𝐴. So for 𝑏′ := true in 𝐴

we then obtain ¬𝑝 , in contradiction to the of assumption 𝑝 . □

http://www.ps.uni-saarland.de/~kirst/drafts/website/toc.html
http://www.ps.uni-saarland.de/~kirst/drafts/website/toc.html
https://coq.inria.fr/doc/master/stdlib/Coq.Logic.ClassicalFacts.html
https://coq.inria.fr/doc/master/stdlib/Coq.Logic.ClassicalFacts.html
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.LogicalPrinciples.html#scheme_facts_2
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.LogicalPrinciples.html#DP_nat_impl_LPO
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.LogicalPrinciples.html#IP_iff_EP
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.LogicalPrinciples.html#there_are_equivalent
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While the previous principles explain some structure below LEM,

there is an orthogonal structure below the axiom of choice [21]:

AC𝐴,𝐵 := ∀𝑅 : 𝐴→𝐵→P. tot(𝑅) → ∃𝑓 : 𝐴→𝐵.∀𝑥 . 𝑅 𝑥 (𝑓 𝑥)
DC𝐴 := ∀𝑅 : 𝐴→𝐴→P. tot(𝑅) → ∃𝑓 : N→𝐴.∀𝑛. 𝑅 (𝑓 𝑛) (𝑓 (𝑛 + 1))
CC𝐴 := ∀𝑅 : N→𝐴→P. tot(𝑅) → ∃𝑓 : N→𝐴.∀𝑛. 𝑅 𝑛 (𝑓 𝑛)

OAC𝐴,𝐵 := ∀𝑅 : 𝐴→𝐵→P.∃𝑓 : 𝐴→𝐵. tot(𝑅) → ∀𝑥 . 𝑅 𝑥 (𝑓 𝑥)
These are the axiom of choice, dependent choice, countable

choice, and omniscient choice. Note that the latter is a combination

of AC and IP, similar combinations work for other choice axioms:

Fact 2.3. For inhabited 𝐴 and 𝐵, OAC𝐴,𝐵 is equivalent to the
conjunction of AC𝐴,𝐵 and IP𝐵 .

Proof. ThatOAC𝐴,𝐵 implies AC𝐴,𝐵 is obvious and to derive IP𝐵
for 𝑃 : 𝐵→P one instantiates OAC𝐴,𝐵 to 𝑅 𝑥 𝑦 := 𝑃 𝑦. Conversely

deriving OAC𝐴,𝐵 for 𝑅 : 𝐴→𝐵→P, note that just using AC𝐴,𝐵 on 𝑅

would require IP𝐴→𝐵 to allow postponing the totality proof. Instead,

using

𝑅′ 𝑥 𝑦 := (∃𝑦′ . 𝑅 𝑥 𝑦′) → 𝑅 𝑥 𝑦

we just need IP𝐵 to show 𝑅′ total to obtain a choice function 𝑓 :

𝐴→𝐵 from AC𝐴,𝐵 then also witnessing OAC𝐴,𝐵 . □

As for the previous principles, we write AC to denote AC𝐴,𝐵 for

all 𝐴, 𝐵 and analogously for the other choice principles, with the

restriction to inhabited 𝐴 in the case of DC.

Fact 2.4. AC implies DC and DC implies CC.

Proof. These follow by well-known arguments, see [21] for

instance. We sketch the implication from DC to CC in preparation

of a more general version presented in Fact 7.2. First note that DC𝐴

can be equivalently stated for arbitrary 𝑥0 : 𝐴 as

∀𝑅 : 𝐴→𝐴→P. tot(𝑅) → ∃𝑓 . 𝑓 0 = 𝑥0 ∧ ∀𝑛. 𝑅 (𝑓 𝑛) (𝑓 (𝑛 + 1))
by restricting 𝑅 to the sub-relation 𝑅′ reachable from 𝑥0.

Now to show CC, assume a total relation N→𝐴→P on 𝐴 with

some element 𝑎0 and consider 𝐴′
:= N ×𝐴 and

𝑅′ (𝑛, 𝑥) (𝑚,𝑦) := 𝑚 = 𝑛 + 1 ∧ 𝑅 𝑛𝑦

which is total since 𝑅 is total. The modified version ofDC for 𝑅′ and
the choice 𝑥0 := (0, 𝑎0) then yields a path 𝑓 ′ : N→ N ×𝐴 through

𝑅′ and it is straightforward to verify that 𝑓 𝑛 := 𝜋2 (𝑓 ′ (𝑛 + 1)) is a
choice function for 𝑅. □

WewriteDCΔ
andCCΔ

forDC andCC restricted to decidable re-

lations, respectively. We assume thatCCΔ
holds in our meta-theory,

as is the case in most formulations of constructive mathematics,

while DCΔ
is usually unprovable in full generality.

2.2 First-Order Logic
We summarise the concepts for first-order logic (FOL) needed to

state the downward Löwenheim-Skolem (DLS) theorem. The syntax
of FOL is represented inductively by terms 𝑡 : T and formulas 𝜑 : F
depending on signatures of function and relation symbols 𝑓 and 𝑃 :

𝑡 : T ::= x𝑛 | 𝑓 ®𝑡 (𝑛 : N)
𝜑,𝜓 : F ::= ¤⊥ | 𝑃 ®𝑡 | 𝜑 ¤→𝜓 | 𝜑 ¤∧𝜓 | 𝜑 ¤∨𝜓 | ¤∀𝜑 | ¤∃𝜑

The term vectors ®𝑡 are required to have length matching the spec-

ified arities |𝑓 | and |𝑃 | of 𝑓 and 𝑃 . The negative fragment of FOL

referred to in Facts 2.6 and 3.1 comprises formulas only constructed

with ¤⊥, ¤→, and
¤∀. For the purpose of this paper, we assume that the

signatures of function and relation symbols are countable, which

induces that so are T and F.
Variable binding is expressed using de Bruijn indices [9], where a

bound variable is encoded as the number of quantifiers shadowing

its relevant binder. Capture-avoiding instantiation with parallel

substitutions 𝜎 : N→T is defined both for terms as 𝑡 [𝜎] and for-

mulas as 𝜑 [𝜎]. Notably, ( ¤∀𝜑) [𝜎] is defined by
¤∀[↑ 𝜎] where ↑ 𝜎

is a suitable shifting substitution. We denote by 𝑡 : T𝑐 and 𝜑 : F𝑐

the closed terms and formulas, respectively, i.e. those that do not

contain free variables. The latter are also called sentences.

The standard notion of Tarski semantics is obtained by interpret-

ing formulas in modelsM identified with their underlying domain,

providing interpretation functionsM | 𝑓 | → M for each 𝑓 and re-

lationsM |𝑃 | → P for each 𝑃 . Given an environment 𝜌 : N→ M,

we define term evaluation 𝜌 𝑡 and formula satisfaction M ⊨𝜌 𝜑

recursively. For instance, the denotation of universal quantifiers is

M ⊨𝜌 ¤∀𝜑 := ∀𝑥 : M .M ⊨𝜌 𝜑 [𝑥]

with 𝜑 [𝑥] being a notational shorthand expressing that we consider
𝜑 in the updated environment mapping the first variable to the

domain element 𝑥 .

While wewill mostly be concerned with semantic considerations,

to illustrate the connection of the downward Löwenheim-Skolem

theorem to completeness, we also briefly use deduction systems.
Deduction systems are represented by inductive predicates Γ ⊢ 𝜑
relating contexts Γ : F→P with derivable formulas 𝜑 , for instance

by rules in the style of natural deduction. A classical system is

obtained by incorporating a rule like double negation elimination,

which in a constructive meta-theory is only sound for classical

models, i.e. models satisfying M ⊨𝜌 𝜑 orM ⊨𝜌 ¤¬𝜑 for all 𝜑 .

Fact 2.5 (Soundness). If Γ ⊢ 𝜑 , then M ⊨ 𝜑 for every classical
modelM withM ⊨ Γ.

Proof. By induction on the derivation of Γ ⊢ 𝜑 , most cases are

straightforward. To show the classical derivation rule sound, the

classicality of the model is required. □

The converse property of soundness is completeness, stating that

semantic validity implies syntactic provability. In full generality,

completeness cannot be proven constructively [13, 17, 24, 25, 35],

but the intermediate model existence theorem is constructive for

the negative fragment [14, 18].

Fact 2.6 (Model Existence). In the negative fragment of FOL,
for every consistent context Γ of sentences one can construct a syntactic
modelM over the domain T such that M ⊨ Γ.

Proof. We outline the main construction as it will be relevant

for similar syntactic models used in Fact 3.3 and theorem 3.5. In a

first step, a constructive version of the Lindenbaum Lemma is used

to extend Γ into a consistent context Δ ⊇ Γ with suitable closure

properties. Next, a model over T as domain with

𝑓 M ®𝑡 := 𝑓 ®𝑡 and 𝑃M ®𝑡 := 𝑃 ®𝑡 ∈ Δ

http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.LogicalPrinciples.html#OAC_impl_AC_IP
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.LogicalPrinciples.html#AC_impl_DC
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.Semantics.Tarski.FragmentSoundness.html#sound_for_classical_model
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.Completeness.TarskiCompleteness.html#model_bot_correct
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is constructed, for which the so-called Truth Lemma

M ⊨𝜎 𝜑 ↔ 𝜑 [𝜎] ∈ Δ

is verified by induction on 𝜑 for all 𝜎 : N→T, acting both as sub-

stitution and environment in M. Then since Γ ⊆ Δ, in particular

M ⊨ Γ follows. □

We will see in Fact 3.1 that the model existence theorem yields a

weak but fully constructive formulation of the DLS theorem. This

formulation will be based on the notion of elementary equivalence.

Definition 2.7 (Elementary Eqivalence). Two models M
andN are elementarily equivalent if they satisfy the same sentences,
i.e. if for every closed 𝜑 : F𝑐 we haveM ⊨ 𝜑 iff N ⊨ 𝜑 .

Note that elementarily equivalent models only satisfy the same

closed formulas but otherwise may behave extremely differently.

A much stronger requirement is that of elementary embeddings,

taking all formulas into account and therefore completely aligning

the behaviour of the models.

Definition 2.8 (Elementary Submodel). Given models M and
N , we call ℎ : M→N an elementary embedding if

∀𝜌𝜑.M ⊨𝜌 𝜑 ↔ N ⊨ℎ◦𝜌 𝜑.

If such an ℎ exists, we callM an elementary submodel of N .

The DLS theorem in full strength then states that every model

has a countable elementary submodel.

3 CONSTRUCTIVE LÖWENHEIM-SKOLEM
We begin with a comparison of different constructive proof strate-

gies for the DLS theorem at various strengths, mostly to iden-

tify the underlying concepts in preparation of upcoming results.

First, a weak formulation only yielding an elementarily equivalent

model but not necessarily an elementary submodel is obtained as a

by-product of a Henkin-style completeness proof via model exis-

tence [16]. Since the Henkin construction is fully constructive in

the negative fragment [14, 18], so is the derived DLS theorem.

Fact 3.1 (DLS via Model Existence). In the negative fragment
of FOL, for every classical model one can construct an elementarily
equivalent syntactic model.

Proof. Given thatM is classical, we can use soundness to show

that the collection Th(M) := {𝜑 : F𝑐 | M ⊨ 𝜑} of closed formulas

satisfied by M is consistent. Then by model existence (Fact 2.6),

there is amodelN with (countable) domainT andN ⊨ Th(M). This
already establishes the first implication showingM elementarily

equivalent to N . For the converse, assuming a closed formula 𝜑

with N ⊨ 𝜑 , we obtain M ⊨ 𝜑 by using the classicality of M and

the observation that, if it wereM ⊨ ¤¬𝜑 instead, alsoN ⊨ ¤¬𝜑 would

follow, contradiction. □

The model existence proof can be extended to the full syntax

using LEM alone [14], so the derived version of the DLS theorem
notably does not rely on any form of choice axioms. In fact, already

the weak law of excluded middle (∀𝑝.¬𝑝 ∨ ¬¬𝑝) is sufficient [19]

but we are not aware of a proof showing it necessary for this form

of the DLS theorem.

Also note that the Lindenbaum extension used in the proof of

Fact 2.6 ensures that quantified formulas have associated Henkin

witnesses in form of unused variables. In the second variant, this

intermediate step is not necessary, since we restrict to models that

address all Henkin witnesses by closed terms.

Definition 3.2 (Witness Property). Given a model M with
environment 𝜌 , we call𝑤 : M a (universal) Henkin witness for ¤∀𝜑 if

M ⊨𝜌 𝜑 [𝑤] → M ⊨𝜌 ¤∀𝜑

and, symmetrically, an (existential) Henkin witness for ¤∃𝜑 if

M ⊨𝜌 ¤∃𝜑 → M ⊨𝜌 𝜑 [𝑤] .

We say that M has the witness property if Henkin witnesses for all
formulas can be expressed by closed terms 𝑡 : T𝑐 .

For models with the witness property, we can then derive the

stronger conclusion yielding a countable elementary submodel by

means of a simplified syntactic model construction.

Fact 3.3 (DLS via Witnesses). For every model satisfying the
witness property one can construct a syntactic elementary submodel.

Proof. Given M with the witness property and an arbitrary

environment 𝜌 , we consider the syntactic model N constructed

over the (countable) domain T by setting

𝑓 N ®𝑡 := 𝑓 ®𝑡 and 𝑃N ®𝑡 := 𝑃M (𝜌 ®𝑡) .

We prove that 𝜌 is an elementary embedding ofN intoM, i.e. that

N ⊨𝜎 𝜑 if and only ifM ⊨𝜌◦𝜎 𝜑 for all 𝜎 : T→N and𝜑 by induction

on 𝜑 . The only cases of interest are the quantifiers, we explain

universal quantification as example.

Let 𝑡 : T𝑐 denote the Henkinwitness for ¤∀𝜑 and assumeN ⊨𝜎 ¤∀𝜑 .
Then in particularN ⊨𝜎 𝜑 [𝑡] and by inductive hypothesisM ⊨𝜌◦𝜎
𝜑 [𝑡], which implies M ⊨𝜌◦𝜎 ¤∀𝜑 by the Henkin property of 𝑡 . That

conversely M ⊨𝜌◦𝜎 ¤∀𝜑 implies N ⊨𝜎 ¤∀𝜑 is straightforward. □

Many proofs of the DLS theorem proceed by extending the sig-

nature with enough fresh constants such that a model satisfying the

witness property can be constructed [7]. Alternatively, as a the third

variant, we replace the condition to represent Henkin witnesses

syntactically with environments collecting them semantically.

Definition 3.4 (Henkin Environment). Given a model M, we
call 𝜌 : N→M a Henkin environment if it collects Henkin witnesses
for every formula 𝜑 as follows:

∃𝑛.M ⊨𝜌 𝜑 [𝜌 𝑛] → M ⊨𝜌 ¤∀𝜑
∃𝑛.M ⊨𝜌 ¤∃𝜑 → M ⊨𝜌 𝜑 [𝜌 𝑛]

Note that ifM has thewitness property, thenM admits a Henkin

environment by enumerating the evaluations of closed terms, but

not vice versa.

The use of Henkin environments then allows to conclude the

DLS theorem without extending the signature or model domain,

which is a particularly suitable strategy for mechanisation.

Theorem 3.5 (DLS via Environments). For every model admit-
ting a Henkin environment one can construct a syntactic elementary
submodel.

http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.Core.html#elementary_equivalence
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.Core.html#elementary_homomorphism
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Proof. Given a modelM with Henkin environment 𝜌 , we pro-

ceed as in the previous proof, i.e. we consider the syntactic modelN
induced by 𝜌 . Again, inductively verifying that 𝜌 is an elementary

embedding of N into M is only non-trivial for quantifiers, to illus-

trate such a critical case assume N ⊨𝜎 ¤∀𝜑 for some environment

𝜎 : T→N and formula 𝜑 . We aim to show M ⊨𝜌◦𝜎 ¤∀𝜑 which is

equivalent toM ⊨𝜌 ¤∀𝜑 [↑𝜎] and thus reduces toM ⊨𝜌 𝜑 [↑𝜎] [𝜌 𝑛]
using a witness 𝜌 𝑛 guaranteed by the Henkin property of 𝜌 . The lat-

ter then follows fromN ⊨𝜎 ¤∀𝜑 instantiated to 𝜌 𝑛 and the inductive

hypothesis. □

All upcoming proofs of the DLS theorem will factor through

Theorem 3.5 or a strengthening thereof (Theorem 6.2).

4 LÖWENHEIM-SKOLEM USING DC AND LEM
In this section, we use the proof strategy induced by Theorem 3.5 to

reconstruct the well-known connection of the DLS theorem to DC
over a classical meta-theory [3, 12, 22], providing bothCC and LEM.

First, we show that in this context, DC can be used to construct a

Henkin environment and therefore to conclude the DLS theorem.

As the later, constructively refined, proofs will follow the same

pattern, we give the construction here in full detail.

Theorem 4.1. Assuming DC + LEM, the DLS theorem holds.

Proof. By Theorem 3.5, it is enough to show that under the

given assumptions every model admits a Henkin environment.

Given a modelM, the construction of Henkin environment is done

in three steps, each making use of a different logical assumption,

thereby explaining the respective non-constructive contributions.

The high-level idea is to describe an extension method how Henkin

witnesses are accumulated stage by stage, where LEM is needed

to guarantee the existence of Henkin witnesses, CC (as a conse-

quence of DC) is needed to pick such witnesses simultaneously for

every formula in every stage, and finally DC is needed to obtain

a path through all stages such that its union constitutes a Henkin

environment.

Formally, we express the extension of environments by a step

relation 𝑆 : (N→M)→(N→M)→P such that 𝑆 𝜌 𝜌′ captures that
𝜌′ contains all witnesses with respect to 𝜌 :

𝑆 𝜌 𝜌′ := 𝜌 ⊆ 𝜌′ ∧ ∀𝜑.
∧ ∃𝑛.M ⊨𝜌 𝜑 [𝜌′ 𝑛] → M ⊨𝜌 ¤∀𝜑

∃𝑛.M ⊨𝜌 ¤∃𝜑 → M ⊨𝜌 𝜑 [𝜌′ 𝑛]
Clearly every fixed point of 𝑆 , i.e. 𝜌 with 𝑆 𝜌 𝜌 , is a Henkin environ-

ment so we now explain how such a fixed point is obtained by the

aforementioned three steps.

(1) Given any environment 𝜌 , the assumption of LEM guaran-

tees Henkin witnesses to exist for all formulas by its con-

nection to the drinker paradoxes: For
¤∀𝜑 , the existence of a

Henkinwitness is exactly the instanceDPM for the predicate

M ⊨𝜌 𝜑 [_] and for
¤∃𝜑 exactly the corresponding instance

EPM .

(2) We now use CCM to show that 𝑆 is total, i.e. given some 𝜌

we construct 𝜌′ with 𝑆 𝜌 𝜌′. By the previous step, we know

that every formula
¤∀𝜑 has a Henkin witness with respect to

𝜌 . So by fixing some enumeration 𝜑𝑛 of formulas, we know

that for every 𝑛 the formula
¤∀𝜑𝑛 has a Henkin witness and

thus CC𝑀 yields a function 𝜌∀ such that 𝜌∀ 𝑛 is the Henkin

witness to
¤∀𝜑𝑛 . Analogously, another application of CC𝑀

yields a function 𝜌∃ such that 𝜌∃ 𝑛 is the Henkin witness to

¤∃𝜑𝑛 . We then set 𝜌′ := 𝜌 ∪ (𝜌∀ ∪ 𝜌∃) and obtain 𝑆 𝜌 𝜌′ by
simple calculation.

(3) We finally apply DCN→M to get a path 𝐹 : N→(N→M)
through 𝑆 , describing a cumulative sequence of environ-

ments 𝐹0 ⊆ 𝐹1 ⊆ 𝐹2 ⊆ . . . of Henkin witnesses. To collect

the whole sequence into a single environment, we define

𝜌 ⟨𝑛1, 𝑛2⟩ := 𝐹𝑛1
𝑛2

and verify that 𝑆 𝜌 𝜌 , i.e. that 𝜌 is Henkin. This is obtained

by composition of several properties of 𝜌 :

• 𝐹𝑘 ⊆ 𝜌 for every 𝑘 : Given 𝑛 we need to find 𝑛′ with
𝐹𝑘 𝑛 = 𝜌 𝑛′, which holds for 𝑛′ := ⟨𝑘, 𝑛⟩.

• 𝑆 𝐹𝑘 𝜌 for every 𝑘 : By the previous fact, we know 𝐹𝑘 ⊆
𝜌 , so we just need to show that 𝜌 contains all Henkin

witnesses relative to 𝐹𝑘 . Since 𝐹 is a path through 𝑆 , we

know 𝑆 𝐹𝑘 𝐹𝑘+1, so 𝐹𝑘+1 contains these witnesses, but then
so does 𝜌 given 𝐹𝑘+1 ⊆ 𝜌 .

• 𝑆 𝜌 𝜌 : Since 𝜌 ⊆ 𝜌 , we just need to show that for given

𝜑 both Henkin witnesses relative to 𝜌 are contained in

𝜌 . First note that 𝜑 contains only finitely many variables

and therefore, since it is constructed in cumulative stages,

we can find 𝑘 with 𝜌 ⊆𝜑 𝐹𝑘 , meaning 𝜌 is included in

𝐹𝑘 on all free variables of 𝜑 . Then in particular there is a

permutation substitution 𝜎 such that evaluation of 𝜑 in 𝜌

coincides with evaluation of 𝜑 [𝜎] in 𝐹𝑘 . But then, since

𝑆 𝐹𝑘 𝜌 by the previous fact, 𝜌 contains the witnesses for

𝜑 [𝜎] relative to 𝐹𝑘 and thus for 𝜑 relative to 𝜌 itself. □

We remark that the forthcoming constructive refinements will

weaken the respective logical assumptions in each of the three

steps above, making precise which independent sources of non-

constructivity are at play.

For the converse direction, we observe that in our constructive

setting, the necessity for dependent choice relies on the presence

of countable choice.

Fact 4.2. Assuming CCN, the DLS theorem implies DC.

Proof. The high-level idea is that the DLS theorem reduces

DC𝐴 to CCN by transforming 𝐴 into a countable domain.

Formally, assuming a total relation 𝑅 : 𝐴→𝐴→P, we consider
the model M with domain 𝐴 and interpretation 𝑃M

𝑅
𝑥 𝑦 := 𝑅 𝑥 𝑦

for some binary relation symbol 𝑃𝑅 . The DLS theorem then yields

an elementary submodel N over a countable domain, say N itself

for simplicity, witnessed by an elementary homomorphism ℎ :

N→M. Since totality is a first-order property with M ⊨ tot(𝑅)
by assumption, in particular N ⊨ tot(𝑅), so the interpretation

𝑃N
𝑅

: N→N→P must be total, too.

But then CCN yields a choice function 𝑓 : N→N for 𝑃N
𝑅

and

we can verify that 𝑔 : N→𝐴 defined by 𝑔𝑛 := ℎ (𝑓 𝑛 0) is a path

through 𝑅: to justify 𝑅 (𝑔𝑛) (𝑔 (𝑛 + 1)) for any 𝑛, consider an en-

vironment 𝜌 : N→N with 𝜌 0 := 𝑓 𝑛 0 and 𝜌 1 := 𝑓 𝑛+1 0, so
𝑅 (𝑔𝑛) (𝑔 (𝑛 + 1)) can be equivalently stated asM ⊨ℎ◦𝜌 𝑃𝑅 (x0, 𝑥1).
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By elementarity of ℎ this reduces to N ⊨𝜌 𝑃𝑅 (x0, 𝑥1), which trans-

lates to 𝑃N
𝑅

(𝑓 𝑛 0) (𝑓 (𝑓 𝑛 0)) and holds since 𝑓 is a choice function

for 𝑃N
𝑅
. □

Corollary 4.3 (Classical Decomposition). Over CCN + LEM
assumed in the background, the DLS theorem is equivalent to DC.

All upcoming derivations of logical principles from the DLS the-

orem will follow the same pattern of turning a given structure into

a countable substructure, deriving a certain property in the simpler

countable case, and reflecting it back to the original case. While it

seems impossible to derive the full strength of DC from the DLS
theorem, as the latter only reduces DC to the constructively still

unprovable CC, we observe that the restriction of DC to decidable
relations can be derived, as it then reduces to the constructively

justified CCΔ
with the same restriction.

Fact 4.4. The DLS theorem implies DCΔ.

Proof. As in the proof of Fact 4.2 we obtain a total relation 𝑃N
𝑅

:

N→N→P induced by theDLS theorem for a model encoding a total

relation 𝑅 : 𝐴→𝐴→P. Now since we assume that 𝑅 is decidable,

so is 𝑃N
𝑅

by elementarity and then CCΔ
N yields a choice function

𝑓 : N→N for 𝑃N
𝑅
. From there we proceed as before. □

Regarding the contribution of LEM in the form of the drinker

paradoxes needed for the Henkin witnesses in each extension step,

there is no chance to fully reverse the result: For instance to derive

DP𝐴 , we could start from a predicate 𝑃 : 𝐴→P but even when

using the DLS theorem to reduce 𝑃 to a countable sub-predicate

𝑃 ′ : N→P, we have no means to find a particular 𝑛 such that 𝑃 ′ 𝑛
would imply ∀𝑛. 𝑃 ′ 𝑛 and therefore ∀𝑥 . 𝑃 𝑥 . In other words, while

the DLS theorem reduces DP𝐴 to DPN, by Fact 2.1 we would still

need at least LPO to proceed deriving DPN. Instead, in the next

section we introduce weakenings of the drinker paradoxes that

do become provable in the countable case while still being strong

enough to derive the DLS theorem.

5 THE BLURRED DRINKER PARADOX
In this section, we introduce the concept of blurring, by which we

refer to replacing existential quantifiers by quantification over sub-

sets. By this transformation, logical principles can be obtained with

constructively slightly reduced information content, as concrete

witnesses are hidden in a blur of computationally indistinguishable

elements. Here, we study that concept at the example of the drinker

paradoxes, in Section 7 we will extend it to choice principles. A

summary diagram will be given at the end of this section.

We introduce the following blurred weakenings of DP and EP:

BDP𝐵𝐴 := ∀𝑃 : 𝐴→P.∃𝑓 : 𝐵→𝐴. (∀𝑦. 𝑃 (𝑓 𝑦)) → ∀𝑥 . 𝑃 𝑥

BEP𝐵𝐴 := ∀𝑃 : 𝐴→P.∃𝑓 : 𝐵→𝐴. (∃𝑥 . 𝑃 𝑥) → ∃𝑦. 𝑃 (𝑓 𝑦)

Using the intuition from before, for instance the principle BDP𝐵
𝐴

states that a Henkin witness for 𝑃 : 𝐴→P in the sense of DP𝐴 is

contained in a blur of size at most 𝐵, represented by a function

𝑓 : 𝐵→𝐴. In that situation, we call 𝑓 a blurred Henkin witness or

simply a Henkin blur and require that 𝐵 is inhabited.

Note that, while DP𝐴 and EP𝐴 are duals in the sense that DP𝐴
also yields EP𝐴 for negative predicates {𝑥 : 𝐴 | ¬𝑝 𝑥} and vice

versa, even in that sense BEP𝐵
𝐴
is still slightly weaker than BDP𝐵

𝐴
as it concludes with a constructively strong existential quantifier.

This will play a role in the slightly different connection to Kripke’s

schema subject to Fact 5.3.

We first summarise some properties of the introduced principles:

Fact 5.1. The following statements hold:
1. Both BDP𝐴

𝐴
and BEP𝐴

𝐴
.

2. If BDP𝐵
𝐴
and BDP𝐶

𝐵
, then BDP𝐶

𝐴
.

3. If BEP𝐵
𝐴
and BEP𝐶

𝐵
, then BEP𝐶

𝐴
.

4. DP𝐴 implies BDP𝐵
𝐴
and is equivalent to BDP1

𝐴
.

5. EP𝐴 implies BEP𝐵
𝐴
and is equivalent to BEP1

𝐴
.

Proof. We prove each claim independently.

(1) By choosing 𝑓 to be the identity function.

(2) Assuming 𝑃 : 𝐴→P, given 𝑓1 : 𝐵→𝐴 from BDP𝐵
𝐴
for 𝑃 and

𝑓2 : 𝐶→𝐵 from BDP𝐶
𝐵
for 𝑃 ◦ 𝑓1, the composition 𝑓1 ◦ 𝑓2

witnesses BDP𝐶
𝐴
for 𝑃 .

(3) Analogous to (2).

(4) Assuming 𝑃 : 𝐴→P, DP𝐴 for 𝑃 yields a Henkin witness 𝑥 for

𝑃 and the constant function 𝑓 𝑦 := 𝑥 then witnesses BDP𝐵
𝐴
.

Next, if 𝑓 : 1→𝐴 witnesses BDP1
𝐴
for 𝑃 , then 𝑓 ★witnesses

DP𝐴 for 𝑃 .

(5) Analogous to (4). □

Note that by (1) in particular BDPN
N
and BEPN

N
hold, meaning

that in light of the concluding remark in Section 4 we indeed face

weakenings of the drinker paradoxes that are provable in the count-

able case. For simplicity, from now on we write BDP to denote

BDPN
𝐴
for all inhabited 𝐴, as the case of countable blurring will be

the most relevant one, same for BEP.
To illustrate the generality of the blurring concept, we compare

the blurred drinker paradoxes to a blurred form of IP:

BIP𝐵𝐴 := ∀𝑃 : 𝐴→P.∀𝑝 : P. (𝑝 → ∃𝑥 . 𝑃 𝑥)
→ ∃𝑓 : 𝐵→𝐴. 𝑝 → ∃𝑦. 𝑃 (𝑓 𝑦)

For BIP we could show similar properties as in Fact 5.1, stating

that it is a generalisation of IP into a hierarchy of principles. Instead,

we generalise the equivalence of EP and IP recorded in Fact 2.1.

Fact 5.2. BEP𝐵
𝐴
is equivalent to BIP𝐵

𝐴
.

Proof. Analogous to the proof of Fact 2.1, for the backwards

direction choose 𝑝 := ∃𝑥 . 𝑃 𝑥 as before. □

Intuitively, the blurred drinker paradoxes allow to test quantified

properties on a large domain by considering restrictions to smaller

domains, especially countable ones. In this perspective, they re-

semble Kripke’s schema [41], stating that every proposition can

be tested by considering the solvability of Boolean functions over

countable domain:

KS := ∀𝑝 : P.∃𝑓 : N→B. 𝑝 ↔ ∃𝑛. 𝑓 𝑛 = true

KS′ := ∀𝑝 : P.∃𝑓 . (𝑝 → ¬(∀𝑛. 𝑓 𝑛 = false)) ∧ ((∃𝑛. 𝑓 𝑛 = true) → 𝑝)
Note that KS expresses that every proposition is Σ1, where the

logical complexity class Σ1 refers to the syntactic form of a single
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existential quantifier over a decidable predicate. In comparison,

the slightly weaker KS′ replaces the existential quantifier in one

direction by a negated universal quantifier.

We now establish the connection of the blurred drinker para-

doxes to these formulations of Kripke’s schema:

Fact 5.3. BDP implies KS′ and BEP implies KS.

Proof. We show that BEP implies KS, the other claim is similar.

So assuming 𝑝 : P, consider 𝐴 := {𝑏 : B | 𝑏 = false ∨ 𝑝} and

𝑃 𝑏 :=

{
𝑝 if 𝑏 = true

⊥ otherwise

for which BEPN
𝐴
yields a Henkin blur 𝑓 : N→𝐴. The induced under-

lying function 𝑔 : N→B then witnesses KS for 𝑝 : First assuming 𝑝 ,

we can show ∃𝑏. 𝑃 𝑏 by using 𝑏 = true. Then by the Henkin prop-

erty of 𝑓 we obtain ∃𝑛. 𝑃 (𝑓 𝑛) and thus ∃𝑛. 𝑔 𝑛 = true. Conversely,
if 𝑔𝑛 = true for some 𝑛, then by construction 𝑝 can be derived. □

Note that Kripke’s schema can also be formulated for arbitrary

𝐵 in the role of N, then admitting the same connections for drinker

paradoxes blurred by 𝐵. In that sense, the latter can be seen as a

generalisation of Kripke’s schema.

In order to further characterise the logical strength of the blurred

drinker paradoxes, note that the difference between KS and KS′

disappears in the presence of Markov’s principle [29], which states

that Σ1 propositions satisfy double negation elimination:

MP := ∀𝑓 : N→B.¬¬(∃𝑛. 𝑓 𝑛 = true) → ∃𝑛. 𝑓 𝑛 = true

It is straightforward to see that MP follows from LPO and thus

from DPN by Fact 2.1. Since it is also well-known thatMP together

with KS and thus already with KS′ implies LEM, we obtain the

following decompositions of LEM into blurred drinker paradoxes

and side conditions.

Fact 5.4. The following are equivalent to LEM:

1. BDP + DPN
2. BDP +MP

3. BEP + EPN
4. BEP +MP

Proof. That LEM implies (1)-(4) follows from previous observa-

tions. We show that (1) and (4) both imply LEM, analogous argu-

ments work for (2) and (3):

• By Fact 2.2 it is enough to show DP, i.e. DP𝐴 for every in-

habited 𝐴. By (1) of Fact 5.1, this amounts to showing BDP1
𝐴
,

which decomposes into BDPN
𝐴
and BDP1N by (2) of Fact 5.1.

The former is an instance of BDP and the equivalent to DPN
by again using (1) of Fact 5.1.

• By Fact 5.3, BEP implies KS and the latter together with MP
implies LEM by a standard argument: Given a proposition

𝑝 , using KS for the claim 𝑝 ∨ ¬𝑝 yields 𝑓 : N→P such that

𝑝 ∨¬𝑝 is equivalent to ∃𝑛. 𝑓 𝑛 = true. ByMP, it is enough to

show ¬¬(∃𝑛. 𝑓 𝑛 = true) and hence ¬¬(𝑝 ∨ ¬𝑝), the latter
being a tautology. □

We summarise the connections of the blurred drinker paradoxes

with related principles in the following diagram:

LEM/DP/EP/IP

BDP LPO BEP

KS′ MP KS
In this diagram, the solid arrows depict (strict) implications while

the dashed arrows depict combined equivalences.

6 LÖWENHEIM-SKOLEM USING DC AND BDP
We now come back to theDLS theorem and explain how the blurred

drinker paradoxes from the previous section capture the contribu-

tion of classical logic below LEM, postponing the orthogonal anal-

ysis of choice principles below DC. To this end, we first develop a

strengthening of Theorem 3.5 by observing that a weaker form of

Henkin environments suffices to construct elementary submodels.

Definition 6.1 (BlurredHenkin Environment). Given amodel
M, we call 𝜌 : N→M a blurred Henkin environment if it collects
Henkin witnesses for every formula 𝜑 as follows:

(∀𝑛.M ⊨𝜌 𝜑 [𝜌 𝑛]) → M ⊨𝜌 ¤∀𝜑
M ⊨𝜌 ¤∃𝜑 → (∃𝑛.M ⊨𝜌 𝜑 [𝜌 𝑛])

Note that every Henkin environment is a blurred Henkin envi-

ronment, but not vice versa. Still, the latter are enough to derive the

DLS theorem, as in the construction of the syntactic model actually

no concrete witnesses are needed but just a guarantee that they are

among the elements selected by the environment.

Theorem 6.2 (DLS via Blurring). For every model admitting a
blurred Henkin environment one can construct a syntactic elementary
submodel.

Proof. This is basically the same as Theorem 3.5 where, for

instance, in the critical direction of universal quantification we

assume that the syntactic modelN induced by 𝜌 satisfiesN ⊨𝜎 ¤∀𝜑
for some environment 𝜎 : T→N and formula 𝜑 and need to show

M ⊨𝜌◦𝜎 ¤∀𝜑 . The latter is equivalent to M ⊨𝜌 ¤∀𝜑 [↑ 𝜎] and thus

reduces to ∀𝑛.M ⊨𝜌 𝜑 [↑𝜎] [𝜌 𝑛] using the Henkin property of 𝜌 .

For some given 𝑛, the claim follows from N ⊨𝜎 ¤∀𝜑 instantiated to

𝜌 𝑛 and the inductive hypothesis. □

Following the structure of Theorem 4.1, we now derive the

DLS theorem from Theorem 6.2 by iteratively constructing blurred

Henkin environments. The previous use of LEM is now replaced

by BDP to accommodate universal quantification, and by BEP to

accommodate existential quantification.

Theorem 6.3. AssumingDC+BDP+BEP, theDLS theorem holds.

Proof. We employ Theorem 6.2, leaving us with the construc-

tion of a blurred Henkin environment for an arbitrary model M.

This construction follows the same outline as in the proof of The-

orem 4.1, i.e. we devise a step relation 𝑆 accumulating Henkin

witnesses and obtain a blurred Henkin environment as a fixed point

of 𝑆 in three steps. As step relation 𝑆 𝜌 𝜌′, we this time only require
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that 𝜌′ is a Henkin blur for all formulas 𝜑 relative to 𝜌 , instead of

the stronger requirement to provide concrete witnesses:

𝑆 𝜌 𝜌′ := 𝜌 ⊆ 𝜌′ ∧ ∀𝜑.
∧ (∀𝑛.M ⊨𝜌 𝜑 [𝜌′ 𝑛]) → M ⊨𝜌 ¤∀𝜑

M ⊨𝜌 ¤∃𝜑 → (∃𝑛.M ⊨𝜌 𝜑 [𝜌′ 𝑛])
(1) Given 𝜌 and𝜑 there is a guarantee to proceed, as the instance

BDPM for the predicate M ⊨𝜌 𝜑 [_] yields a Henkin blur

for
¤∀𝜑 and the same instance of BEPM a Henkin blur for

¤∃𝜑 .
(2) We derive totality of 𝑆 at 𝜌 using CCN→M (following from

DC) on the previous fact, thus yielding choice functions

𝑓∀, 𝑓∃ : N→(N→M) such that 𝑓∀ 𝑛 is a Henkin blur for
¤∀𝜑𝑛

and 𝑓∃ 𝑛 is a Henkin blur for
¤∃𝜑𝑛 . By using Cantor pairing

again, they induce environments 𝜌∀ ⟨𝑛1, 𝑛2⟩ := 𝑓∀ 𝑛1 𝑛2 and
𝜌∃ ⟨𝑛1, 𝑛2⟩ := 𝑓∃ 𝑛1 𝑛2 and for the choice 𝜌′ := 𝜌∪(𝜌∀∪𝜌∃)
it is straightforward to verify 𝑆 𝜌 𝜌′ as desired.

(3) Finally, we can useDCN→M to obtain a path 𝐹 : N→(N→M)
through 𝑆 and verify that 𝜌 ⟨𝑛1, 𝑛2⟩ := 𝐹𝑛1

𝑛2 is a fixed point

of 𝑆 and thus a blurred Henkin environment similarly as

before. □

Note that restricting to the negative fragment of FOL, only BDP
would be needed, meaning the non-constructive contributions of

both sorts of quantification in the DLS theorem are independent.

Conversely, from the DLS theorem over the negative fragment we

can derive BDP, and with existential quantification present, also

BEP becomes derivable.

Fact 6.4. The DLS theorem implies BDP + BEP.

Proof. We show how to derive BDP from the DLS theorem, the

case of BEP is dual. Similar to the reverse proofs given in Section 4,

the high-level idea is that the DLS theorem reduces BDPN
𝐴
to the

provable BDPN
N
.

Formally, assume a predicate 𝑃 : 𝐴→P for some inhabited 𝐴,

which we encode as a modelM over𝐴 by 𝑃M 𝑥 := 𝑃 𝑥 . Then there

must be an elementary embedding ℎ : N→M from some countable

model N , conceived over the domain N for simplicity.

Since inN we do have a function 𝑓 : N→N such that∀𝑛. 𝑃𝑁 (𝑓 𝑛)
implies ∀𝑛. 𝑃N 𝑛, for instance by taking 𝑓 to be the identity, we

obtain that ℎ ◦ 𝑓 is a Henkin blur for 𝑃 as follows: Assuming

∀𝑛. 𝑃 (ℎ (𝑓 𝑛)) we show ∀𝑛. 𝑃N (𝑓 𝑛) by fixing 𝑛 and formulating

𝑃𝑁 (𝑓 𝑛) as N ⊨𝜌 𝑃 (x0) for 𝜌 0 := 𝑓 𝑛, which by elementarity fol-

lows from M ⊨ℎ◦𝜌 𝑃 (x0), that is the assumption 𝑃 (ℎ (𝑓 𝑛)). But
then ∀𝑥 . 𝑃N 𝑥 , which again reflects up into M using ℎ and thus

yields ∀𝑥 . 𝑃 𝑥 . □

Corollary 6.5 (Blurred Decomposition). Over CC assumed in
the background, the DLS theorem is equivalent to DC + BDP + BEP.

That means, disregarding the orthogonal contribution of choice

principles, the logical strength of the DLS theorem corresponds

exactly to the blurred drinker paradoxes.

7 BLURRED CHOICE AXIOMS
In order to complete the analysis, in this section we discuss similarly

blurred forms of choice principles that allow a precise decompo-

sition of the DLS theorem. For simplicity, we will consider the

concrete case of countable blurring, i.e. using functions 𝑓 : N→𝐴

but sketch more general formulations at a later point (Section 9.3).

Again, a summary diagram will be given at the end of this section.

We begin with a blurring of countable choice that weakens the

information provided by a choice function for a total relation by

hiding the choices within a countable subset:

BCC𝐴 := ∀𝑅 : N→𝐴→P. tot(𝑅) → ∃𝑓 : N→𝐴.∀𝑛.∃𝑚. 𝑅 𝑛 (𝑓 𝑚)
As usual, we write BCC to denote BCC𝐴 for all 𝐴, similarly for

all upcoming choice principles. In the situation of BCC𝐴 we call

𝑓 : N→𝐴 a blurred choice function. Note that in the case of 𝐴 := N
the identity onN is a blurred choice function, so as in the case of the

blurred drinker paradoxes we have the desired property that BCC
and all upcoming blurred choice principles hold in the countable

case, suggesting their connection to the DLS theorem. Moreover,

blurred choice principles follow from their regular counterparts,

stated here for countable choice:

Fact 7.1. CC𝐴 implies BCC𝐴 .

Proof. For a total relation 𝑅 : N→𝐴→P we obtain a choice

function 𝑓 : N→𝐴 which in particular witnesses BCC𝐴 since for 𝑛

we simply choose𝑚 := 𝑛 to obtain 𝑅 𝑛 (𝑓 𝑚). □

We will see in Section 8 that BCC is enough to handle step (2)

of the construction in Theorem 6.3, i.e. to derive totality of the step

relation 𝑆 . Regarding step (3), i.e. the derivation of a fixed point for 𝑆 ,

we need to find a weakening of DC without the contribution of CC,
so that it becomes provable in the countable case. A first attempt

is as follows, where we simply replace the path through a total

relation 𝑅 guaranteed by DC by a countable and total sub-relation:

BDC𝐴 := ∀𝑅 : 𝐴→𝐴→P. tot(𝑅) → ∃𝑓 : N→𝐴. tot(𝑅 ◦ 𝑓 )
Note that by 𝑅 ◦ 𝑓 we refer to the point wise composition of

𝑅 and 𝑓 , i.e. to the relation 𝑅′ 𝑛𝑚 := 𝑅 (𝑓 𝑛) (𝑓 𝑚). The obtained
function 𝑓 is called a blurred path as it still represents a sequence

through 𝑅 but hides the respective continuations.

We then show that, while implying BCC, the obtained BDC
needs some contribution of CC to get back the strength of DC.

Fact 7.2. The following statements hold:
1. DC𝐴 implies BDC𝐴 .

2. BDC implies BCC.

3. DC is equivalent to BDC + CCN.

Proof. We prove all claims independently:

(1) Again as in Fact 7.1, the blurred conclusion ofBDC𝐴 is visibly

a weakening of the conclusion of DC𝐴 .

(2) First as in Fact 2.4, note thatBDC𝐴 can be equivalently stated

for arbitrary 𝑥0 : 𝐴 as

∀𝑅 : 𝐴→𝐴→P. tot(𝑅) → ∃𝑓 . 𝑓 0 = 𝑥0 ∧ tot(𝑅 ◦ 𝑓 )
by restricting 𝑅 to the sub-relation 𝑅′ reachable from 𝑥0.

Then a blurred path 𝑓 through 𝑅 induces a blurred path 𝑓 ′

through 𝑅′ by first taking the path from 𝑥0 to 𝑓 0 and by

then continuing with 𝑓 .

Now to show BCC, assume a total relation 𝑅 : N→𝐴→P on
𝐴 with some 𝑎0 and consider 𝐴′

:= N ×𝐴 and

𝑅′ (𝑛, 𝑥) (𝑚,𝑦) := 𝑚 = 𝑛 + 1 ∧ 𝑅 𝑛𝑦
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which is total since 𝑅 is total. The modified version of BDC
for 𝑅′ and the choice 𝑥0 := (0, 𝑎0) then yields a blurred path

𝑓 ′ : N → N × 𝐴 through 𝑅′ and it remains to verify that

𝑓 𝑛 := 𝜋2 (𝑓 ′ 𝑛) is a blurred choice function for 𝑅.

First, using the properties of 𝑓 ′ we derive

∀𝑛. ∃𝑚. 𝜋1 (𝑓 ′𝑚) = 𝑛

by induction on 𝑛, choosing 0 in the base case and, in the

inductive step where we have some𝑚 with 𝜋1 (𝑓 ′𝑚) = 𝑛,

by choosing𝑚′
with 𝑅′ (𝑓 ′𝑚) (𝑓 ′𝑚′) which we obtain by

totality of 𝑅′ ◦ 𝑓 ′.
Now, given some 𝑛, we find𝑚 with 𝑅 𝑛 (𝑓 𝑚) by first finding
𝑚1 with 𝜋1 (𝑓 ′𝑚1) = 𝑛 as above and subsequently by find-

ing𝑚2 with 𝑅′ (𝑓 ′𝑚1) (𝑓 ′𝑚2) via totality of 𝑅′ ◦ 𝑓 ′. Then
𝑅 𝑛 (𝑓 𝑚2) as this is equivalent to𝑅 (𝜋1 (𝑓 ′𝑚1)) (𝜋2 (𝑓 ′𝑚2))
which in turn follows from 𝑅′ (𝑓 ′𝑚1) (𝑓 ′𝑚2).

(3) Given (1) and Fact 2.4 it only remains to show that BDC
and CCN together imply BDC. So assume some total 𝑅 :

𝐴→𝐴→P, then BDC yields 𝑓 : N→𝐴 such that 𝑅 ◦ 𝑓 is total.

The latter is a relation N→N→P to which CCN yields a

choice function 𝑔 : N→ N. A path ℎ : N→ 𝐴 through 𝑅 is

then obtained by the function ℎ 𝑛 := 𝑓 (𝑔𝑛 0). □

Although BDC therefore yields the desired decomposition of

DC, it does not seem strong enough for the purpose regarding the

DLS theorem. Intuitively, the problem is that BDC does not have

access to the history of previous choices that is needed to merge the

environments in proof step (3) of Theorem 6.3. This shortcoming

can be fixed by strengthening to relations over finite sequences 𝐴∗

or, actually sufficient, over pairs 𝐴2
:

BDC2

𝐴 := ∀𝑅 : 𝐴2→𝐴→P. tot(𝑅) → ∃𝑓 : N→𝐴. tot(𝑅 ◦ 𝑓 )
As for BDC, by 𝑅 ◦ 𝑓 we refer to point wise composition of 𝑅 and

𝑓 , this time also including component wise composition in pairs.

First note that BDC2
is indeed a strengthening of BDC:

Fact 7.3. BDC2

𝐴
implies BDC𝐴 .

Proof. Straightforward by turning 𝑅 : 𝐴→𝐴→P to show BDC𝐴

into 𝑅′ (𝑥,𝑦) 𝑧 := 𝑅 𝑥 𝑧 and then applying BDC2

𝐴
. □

We leave the fact that BDC2
also corresponds to a version of DC

without the contribution of CC to a later point, as this proof will

be indirect requiring intermediate structure, see Corollary 7.6.

As we will see in Section 8, the principle BDC2
is already strong

enough for the desired purpose regarding replacingDC in the proof

of Theorem 6.3. Moreover, it is possible to again weaken BDC2
to

not even derive BDC, thus completely orthogonalising the different

ingredients for the DLS theorem:

DDC𝐴 := ∀𝑅 : 𝐴→𝐴→P. dir(𝑅) → ∃𝑓 : N→𝐴. dir(𝑅 ◦ 𝑓 )
Here, by dir(𝑅) we refer to 𝑅 being directed, i.e. satisfying for

every 𝑥,𝑦 : 𝐴 that there is 𝑧 : 𝐴 with 𝑅 𝑥 𝑧 and 𝑅𝑦 𝑧. So informally,

DDC states that every directed relation as a countable directed sub-

relation, which captures the same idea leading to BDC2
that the

information of two previous environments should be combinable.

Indeed, BDC2
can be decomposed independently into DDC and

BCC, with one direction actually akin to the iterative construction

underlying Theorem 6.3 and the forthcoming Theorem 8.1.

Fact 7.4. The following statements hold:
1. BDC2

𝐴
implies DDC𝐴 .

2. BDC2 is equivalent to DDC + BCC.

Proof. We prove both claims independently:

(1) Directedness of 𝑅 : 𝐴→𝐴→P induces totality of

𝑅′ (𝑥,𝑦) 𝑦 := 𝑅 𝑥 𝑧 ∧ 𝑅𝑦 𝑧

and, conversely, totality of a countable sub-relation 𝑅′ ◦ 𝑓

induces directedness of 𝑅 ◦ 𝑓 . The claim follows.

(2) The first direction follows from (1) and Facts 7.2 and 7.3. For

the converse, assume a total relation𝑅 : 𝐴2→𝐴→P. Consider
𝑆 : (N→𝐴)→(N→𝐴)→P defined by

𝑆 𝜌 𝜌′ := 𝜌 ⊆ 𝜌′ ∧ ∀𝑛𝑚.∃𝑘. 𝑅 (𝜌𝑚, 𝜌 𝑛) (𝜌′ 𝑘)
which can be shown total using BCC as follows: Given some

𝜌 , consider the relation 𝑅′ : N→𝐴 defined by

𝑅′ ⟨𝑛1, 𝑛2⟩ 𝑥 := 𝑅 (𝜌 𝑛1, 𝜌 𝑛2) 𝑥
which is total since 𝑅 is total. Then BCC𝐴 yields a blurred

choice function 𝜌′ : N→𝐴 for 𝑅′ and it is easy to verify that

𝑆 𝜌 (𝜌 ∪ 𝜌′) holds, thus establishing totality of 𝑆 as desired.

Employing totality, we obtain that 𝑆 is directed: Given 𝜌1
and 𝜌2 totality yields 𝜌′

1
and 𝜌′

2
with both 𝑆 𝜌1 𝜌

′
1
as well as

𝑆 𝜌2 𝜌
′
2
. It then follows that both 𝑆 𝜌1 (𝜌′

1
∪𝜌′

2
) and 𝑆 𝜌2 (𝜌′

1
∪

𝜌′
2
) by simple calculation.

We now apply DDCN→𝑋 to 𝑆 and obtain 𝐹 : N→(N→𝑋 )
such that 𝑆 ◦ 𝐹 is directed. Then 𝜌 : N→𝑋 defined by

𝜌 ⟨𝑛1, 𝑛2⟩ := 𝐹𝑛1
𝑛2

can be shown to witness BDC2
for 𝑅 as desired: Indeed, to

verify that𝑅◦𝜌 is total (in fact stating that 𝜌 is a fixed point of

𝑆), we assume𝑛 = ⟨𝑛1, 𝑛2⟩ and𝑚 = ⟨𝑚1,𝑚2⟩ and need to find
𝑘 with 𝑅 (𝜌 𝑛) (𝜌𝑚) (𝜌 𝑘). Using the directedness of 𝑆 ◦𝐹 for

𝑛1 and𝑚1, we obtain𝑤 with 𝐹𝑛1
⊆ 𝑤 and 𝐹𝑚1

⊆ 𝑤 , so there

are 𝑛3 and 𝑚3 with 𝐹𝑛1
𝑛2 = 𝐹𝑤 𝑛3 and 𝐹𝑚1

𝑚2 = 𝐹𝑤𝑚3.

Moreover, by totality of 𝑆 ◦ 𝐹 for𝑚 we obtain 𝑘1, 𝑘2 with

𝑅 (𝐹𝑤 𝑛3) (𝐹𝑤𝑚3) (𝐹𝑘1 𝑘2) and thus 𝑅 (𝜌 𝑛) (𝜌𝑚) (𝜌 𝑘) for
the choice 𝑘 := ⟨𝑘1, 𝑘2⟩. □

This decomposition of BDC2
into DDC and BDC then in partic-

ular entails the decomposition of DC into BDC2
and CC.

Fact 7.5. DC implies BDC2.

Proof. We first show that DC𝐴 implies a weaker version of

DDC𝐴 where the directed relation 𝑅 : 𝐴→𝐴→P is additionally
required to be transitive. In that case and since directed relations

are total, DC𝐴 yields a path 𝑓 : N→ 𝐴 through 𝑅. It then remains

to show that 𝑅 ◦ 𝑓 is directed, which follows since given w.l.o.g.

𝑛 < 𝑚 we have both 𝑅 (𝑓 𝑛) (𝑓 (𝑚 + 1)) using transitivity of 𝑅 along

the path 𝑓 connecting 𝑛 and𝑚, as well as 𝑅 (𝑓 𝑚) (𝑓 (𝑚 + 1)) by a

single step along 𝑓 .

Now since the relation 𝐹 defined in the proof part (2) of Fact 7.4

is transitive by construction, this modified version ofDDC together

with BCC, following from DC by Facts 7.1 and 7.2, is enough to

derive BDC2
as before. □

Corollary 7.6. The following statements hold:

http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.LogicalPrinciples.html#BDC2_impl_BDC_on
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.LogicalPrinciples.html#Result
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.LogicalPrinciples.html#BDC2_impl_DDC
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.LogicalPrinciples.html#BDC2_iff_DDC_BCC
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.LogicalPrinciples.html#DC_impl_BDC2
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1. DC is equivalent to BDC2 + CCN.

2. DC is equivalent to DDC + CC.

Finally we show that, similar to Fact 2.3, BDC2
can be strength-

ened into an omniscient version that exactly adds BDP and BEP:

OBDC2

𝐴 := ∀𝑅 : 𝐴2→𝐴→P.∃𝑓 : N→𝐴. tot(𝑅) ↔ tot(𝑅 ◦ 𝑓 )

Wehere state only one direction of the decomposition forOBDC2

as the other direction will follow more directly as a by-product of

the full analysis of the DLS theorem in the next section.

Fact 7.7. OBDC2

𝐴
implies BDC2

𝐴
+ BDP𝐴 + BEP𝐴 .

Proof. We establish each claim separately:

• That OBDC2

𝐴
implies BDC2

𝐴
is as in Fact 2.3.

• To derive BDP𝐴 , assume 𝑃 : 𝐴→P and set

𝑅 (𝑥,𝑦) 𝑧 := 𝑃 𝑥

for which OBDC2

𝐴
yields 𝑓 : N→𝐴 such that 𝑅 is total if and

only if 𝑅 ◦ 𝑓 is total, reducing to 𝑃 𝑥 for all 𝑥 if and only if

𝑃 (𝑓 𝑛) for all 𝑛. So 𝑓 also witnesses BDP2
𝐴
.

• To similarly derive BEP𝐴 , assume 𝑃 : 𝐴→P and set

𝑅 (𝑥,𝑦) 𝑧 := 𝑃 𝑧

because then any 𝑓 such that𝑅 is total iff𝑅◦ 𝑓 is total actually
yields 𝑃 𝑥 for some 𝑥 iff 𝑃 (𝑓 𝑛) for some 𝑛. □

We summarise the connections of the blurred choice axioms

with related principles in the following diagram:

DC CC

BDC2 BDC BCC

DDC

As with the diagram at the end of Section 5, the solid arrows

depict (strict) implications while the dashed arrows depict combined

equivalences.

8 FULL ANALYSIS OF LÖWENHEIM-SKOLEM
We conclude the technical part of this paper with the final decom-

position of the DLS theorem into the independent logical principles

at play and combinations thereof.

Theorem 8.1 (Decomposition). The following are equivalent:

1. The DLS theorem

2. The conjunction of DDC, BCC, BDP, and BEP

3. The conjunction of BDC2, BDP, and BEP

4. The principle OBDC2

Proof. We establish a circle of implications:

• That (4) implies (3) is by Fact 7.7.

• That (3) implies (2) is by (2) of Fact 7.4.

• That (2) implies (1) is a further refinement of Theorem 6.3.

Again using Theorem 6.2, we demonstrate how a blurred

Henkin environment for any model M can be obtained as a

fixed point of the step function 𝑆 from before:

𝑆 𝜌 𝜌′ := 𝜌 ⊆ 𝜌′ ∧ ∀𝜑.
∧ (∀𝑛.M ⊨𝜌 𝜑 [𝜌′ 𝑛]) → M ⊨𝜌 ¤∀𝜑

M ⊨𝜌 ¤∃𝜑 → (∃𝑛.M ⊨𝜌 𝜑 [𝜌′ 𝑛])

(1) As before, BDPM and BEPM yield Henkin blurs 𝜌′ for
every formula 𝜑 and environment 𝜌 .

(2) For totality of 𝑆 , this time using BCCN→M instead of

CCN→M yields blurred choice functions 𝑓∀, 𝑓∃ : N→(N→M),
i.e. we do not have that 𝑓∀ 𝑛 is a Henkin blur for

¤∀𝜑𝑛
but only know that we can obtain such a Henkin blur by

𝑓∀𝑚 for some 𝑚. Yet we can still easily verify that for

𝜌∀ and 𝜌∃ defined by pairing as before and the choice

𝜌′ := 𝜌 ∪ (𝜌∀ ∪ 𝜌∃) we have that 𝑆 𝜌 𝜌′.
(3) To obtain a fixed point of 𝑆 using DDCN→M instead of

DCN→M , we first need to argue that 𝑆 is directed, which

given 𝜌1 and 𝜌2 is easily done by using totality on 𝜌1 ∪ 𝜌2.

Then from DDCN→M we obtain 𝐹 : N→(N→M) such
that 𝑆 ◦ 𝐹 is directed and verify that the now familiar

choice 𝜌 ⟨𝑛1, 𝑛2⟩ := 𝐹𝑛1
𝑛2 is a fixed point of 𝑆 and thus

a blurred Henkin environment: The proofs that 𝐹𝑘 ⊆ 𝜌

and 𝑆 𝐹𝑘 𝜌 are as before and to conclude 𝑆 𝜌 𝜌 , we now use

the directedness of 𝑆 ◦ 𝐹 to show that for every formula 𝜑

there is 𝑘 large enough such that 𝐹𝑘 already is a Henkin

blur for 𝜌 . For the latter, it is again enough to find 𝑘 with

𝜌 ⊆𝜑 𝐹𝑘 , which is obtained by directedness for the finitely

many 𝐹𝑖 contributing to the behaviour of 𝜌 on 𝜑 .

• That (1) implies (4) follows the same pattern as all reverse

proofs from before, using that OBDC2

N
is provable. Assum-

ing 𝑅 : 𝐴2→𝐴→P on inhabited 𝐴 taken as modelM, from

the DLS theorem we obtain an elementary embedding ℎ :

N→M for a modelN over domainN. For the interpretation

𝑅N
, e.g. the identity function 𝑓 : N→N satisfies tot(𝑅N) iff

tot(𝑅N ◦ 𝑓 ). But then by elementarity also ℎ ◦ 𝑓 has that

property, i.e. tot(𝑅) iff tot(𝑅N ◦ (ℎ ◦ 𝑓 )) can be derived as

desired. □

Note that it is also possible to derive all of BDC2
,DDC, and BCC

directly from the DLS theorem, all following the same pattern as

the derivation of BDP and BEP already presented in Fact 6.4.

9 DISCUSSION
In this paper, we have studied several logical decompositions of

the DLS theorem over classical and constructive meta-theories. We

briefly summarise the main results as a base for comparison.

First, over a fully classical meta-theory, we have:

CCN + LEM ⊢ DLS ↔ DC ↔ BDC

This is the previously known equivalence to DC (Corollary 4.3),

additionally refined by only using BDC as a blurred weakening of

DC that is equivalent over CCN (Fact 7.2).

Secondly, assuming just CCN in the meta-theory, we obtain:

CCN ⊢ DLS ↔ DC + BDP + BEP

http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.LogicalPrinciples.html#DC_iff_BDC2_CC_nat
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.LogicalPrinciples.html#DC_iff_DDC_CC
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.LogicalPrinciples.html#OBDC_implies_BDP_BEP_BDC2
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.AnalysisLS.html#LSiffDC
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.AnalysisLS.html#Decomposition1
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.AnalysisLS.html#Decomposition2
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.AnalysisLS.html#Decomposition3
http://www.ps.uni-saarland.de/~kirst/drafts/website/Undecidability.FOL.ModelTheory.AnalysisLS.html#Decomposition4
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This explains which fragment of LEM is needed (Corollary 4.3),

where BDP and BEP independently cover the contribution of syn-

tactic universal and existential quantification. Again, given CCN in

the background, DC could be replaced by any of its blurrings.

Lastly, in a fully constructive meta-theory, we observe:

⊢ DLS ↔ DDC + BCC + BDP + BEP ↔ BDC2 + BDP + BEP

This unveils the individual fragments of DC and CC needed,

namely DDC and BCC, which together form BDC2
(Theorem 8.1).

Using OBDC2
that integrates BDP and BEP, we finally have:

⊢ DLS ↔ OBDC2

These decompositions provide a clear logical characterisation

of the DLS theorem and the observed principles appear naturally:

same as the DLS theorem, they all in one way or another collapse

arbitrary to countable cardinality.

9.1 General Remarks
The central theme governing the results in this paper is the idea of

blurring. Most directly, it appears in the weakening of the drinker

paradoxes to hide information of classical existential quantification.

Thereby, the obtained hierarchies BDP𝐵 and BEP𝐵 for different

blurrings 𝐵 are natural generalisations of DP and EP and we expect

that already Boolean blurring BDPB and BEPB has a constructively

weaker status. Relatedly, the blurred versions of choice axioms

unveil interesting structure, for instance by explaining that DC
without the contributions of CC states that arbitrary relations with

some first-order expressible property must admit countable sub-

relations of the same property, as expressed by BDC and DDC.
Our proof strategy to use variable environments to represent syn-

tactic submodels seems to be an alternative to the usual strategies to

either extend the signature [28] or the submodel as a subset of the

original model [2]. After the extension process has reached a fixed

point, we simply turn the obtained (blurred) Henkin environment

into its induced syntactic submodel, where the Henkin property is

reminiscent of the Tarski-Vaught test [34] usually applied to check

elementarity. We are not aware of another proof following our

strategy and deem it advantageous for our constructive analysis

and particularly suitable for mechanisation.

Another point to mention is that we do not incorporate equality

as a primitive of the syntax and thereby external cardinality of a

model and its internal cardinality based on equivalence classes of

first-order indistinguishability need not coincide. This choice allows

us to state the DLS theorem more generally, applying to all and

not just infinite models, and subsumes the traditional presentation

with equality, as the internal cardinality of a model is bounded

by the external cardinality Connectedly, we use the wording for

“countability” to include finite cardinality, such that we do not have

to talk of “at most countable” models.

9.2 Coq Mechanisation
The Coq development accompanying this paper is based on and

planned to be contributed to the Coq library of first-order logic [23].

This library provides the core definitions of syntax, deduction sys-

tems, and semantics, as well as a constructive completeness proof

we build on for our first approximation of theDLS theorem (Fact 3.1).

The handling of variables is done in the style of the Autosubst 2

framework [39], employing parallel substitutions for de Bruijn in-

dexed syntax and providing a normalisation tactic for substitutive

expressions. On top of that library, our development spans roughly

3,500 lines of code, with only around 300 needed for a self-contained

proof of the DLS theorem. The latter illustrates that our proof strat-

egy based on variable environments instead of signature or model

extension is indeed well-suited for computer mechanisation.

We are aware of a few other mechanisations of the DLS theo-

rem. In Isabelle/HOL, Blanchette and Popescu [1] give a classical

and mostly automated proof of the limited strength of our Fact 3.1,

as by-product of a Henkin-style completeness proof. Using Mizar,

Caminati [6] also proves the weak form of the DLS theorem cor-

responding to our Fact 3.1, again following the strategy factoring

through a classical completeness proof. Contained in the Leanmath-

ematical library [30] and contributed by Anderson is a classical

proof of the DLS theorem in strong form, i.e. providing an elemen-

tary submodel. His proof strategy relies on the full axiom of choice

to obtain Skolem functions for arbitrary formulas.

9.3 Future Work
For the purpose of this paper, we have focused on the case of

countable signatures only. As discussed by Espíndola [12] and

Karagila [22], the classical equivalence of the DLS theorem and

DC generalises to signatures of higher cardinality: for signatures of

size 𝐴, one needs AC𝐴 on top of DC, which was not visible in the

case 𝐴 := N since ACN, that is CC, happens to follow from DC. We

conjecture that, in our constructive setting, something similar can

be observed, namely that we need the following assumptions: DDC
as before, BDP𝐴 and BEP𝐴 now blurred with respect to 𝐴, and, in

replacement of BCC, a blurred form of the general axiom of choice:

BAC𝐴,𝐵 := ∀𝑅 : 𝐴→𝐵→P. tot(𝑅) → ∃𝑓 : 𝐴→𝐵.∀𝑥 .∃𝑦. 𝑅 𝑥 (𝑓 𝑦)
We have already verified that the DLS theorem at signature size

𝐴 implies BDP𝐴 , BEP𝐴 , and BAC𝐴,𝐵 for all 𝐵 if one strengthens

the notion of elementary embedding to provide an inverse, but

whether they together in turn imply DLS is left for future work.

Especially, this proof would require a more conventional proof

strategy since our trick to use variable environments, with N as

domain, to represent submodels, now with𝐴 as domain, is certainly

not applicable.

Another interesting direction would be to consider the upwards

case of the Löwenheim-Skolem theorem, stating that every infinite

model has an elementarity extension at arbitrarily larger cardinal-

ity. For this statement, contrarily to the downwards case, syntac-

tic equality is crucial to classify the actual internal cardinality of

the extended model. While without this restriction, as we already

mechanised the proof is rather trivial and fully constructive by just

adding enough new elements, with the restriction, the proof usually

uses the compactness theorem to ensure that the new elements are

distinct. The compactness theorem, however, is known to not be

constructive, leaving the constructive status of the the upwards

Löwenheim-Skolem theorem to be investigated.

Finally, our working hypothesis regarding the status of the

blurred logical principles is that neither of them collapses, i.e. that

BDP+BEP does not imply LEM, that BCC does not imply CC, that
DDC does not imply BCC, and that BDC does not imply BDC2

.

In the way they are obtained by dropping information in form of
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replacing existential quantifiers over points by existential quanti-

fiers over functions, we have a strong intuition that they are indeed

strictly weaker, to obtain full certainty, however, one has to con-

struct separating models.
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A OVERVIEW OF LOGICAL PRINCIPLES
Standard principles below the excluded middle:

LEM := ∀𝑝 : P. 𝑝 ∨ ¬𝑝
LPO := ∀𝑓 : N→B. (∃𝑛. 𝑓 𝑛 = true) ∨ (∀𝑥 . 𝑓 𝑛 = false)
DP𝐴 := ∀𝑃 : 𝐴→P. ∃𝑥 . 𝑃 𝑥 → ∀𝑦. 𝑃 𝑦
EP𝐴 := ∀𝑃 : 𝐴→P. ∃𝑥 . (∃𝑦. 𝑃 𝑦) → 𝑃 𝑥

IP𝐴 := ∀𝑃 : 𝐴→P.∀𝑝 : P. (𝑝 → ∃𝑥 . 𝑃 𝑥) → ∃𝑥 . 𝑝 → 𝑃 𝑥

KS := ∀𝑝 : P.∃𝑓 : N→B. 𝑝 ↔ ∃𝑛. 𝑓 𝑛 = true

MP := ∀𝑓 : N→B.¬¬(∃𝑛. 𝑓 𝑛 = true) → ∃𝑛. 𝑓 𝑛 = true

Standard principles below the axiom of choice:

AC𝐴,𝐵 := ∀𝑅 : 𝐴→𝐵→P. tot(𝑅) → ∃𝑓 : 𝐴→𝐵.∀𝑥 . 𝑅 𝑥 (𝑓 𝑥)
DC𝐴 := ∀𝑅 : 𝐴→𝐴→P. tot(𝑅) → ∃𝑓 : N→𝐴.∀𝑛. 𝑅 (𝑓 𝑛) (𝑓 (𝑛 + 1))
CC𝐴 := ∀𝑅 : N→𝐴→P. tot(𝑅) → ∃𝑓 : N→𝐴.∀𝑛. 𝑅 𝑛 (𝑓 𝑛)

OAC𝐴,𝐵 := ∀𝑅 : 𝐴→𝐵→P.∃𝑓 : 𝐴→𝐵. tot(𝑅) → ∀𝑥 . 𝑅 𝑥 (𝑓 𝑥)

Blurred principles below the excluded middle:

BDP𝐵𝐴 := ∀𝑃 : 𝐴→P.∃𝑓 : 𝐵→𝐴. (∀𝑦. 𝑃 (𝑓 𝑦)) → ∀𝑥 . 𝑃 𝑥

BEP𝐵𝐴 := ∀𝑃 : 𝐴→P.∃𝑓 : 𝐵→𝐴. (∃𝑥 . 𝑃 𝑥) → ∃𝑦. 𝑃 (𝑓 𝑦)

BIP𝐵𝐴 := ∀𝑃 : 𝐴→P.∀𝑝 : P. (𝑝 → ∃𝑥 . 𝑃 𝑥)
→ ∃𝑓 : 𝐵→𝐴. 𝑝 → ∃𝑦. 𝑃 (𝑓 𝑦)
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Blurred principles below the axiom of choice:

BCC𝐴 := ∀𝑅 : N→𝐴→P. tot(𝑅) → ∃𝑓 : N→𝐴.∀𝑛.∃𝑚. 𝑅 𝑛 (𝑓 𝑚)
BDC𝐴 := ∀𝑅 : 𝐴→𝐴→P. tot(𝑅) → ∃𝑓 : N→𝐴. tot(𝑅 ◦ 𝑓 )
BDC2

𝐴 := ∀𝑅 : 𝐴2→𝐴→P. tot(𝑅) → ∃𝑓 : N→𝐴. tot(𝑅 ◦ 𝑓 )
DDC𝐴 := ∀𝑅 : 𝐴→𝐴→P. dir(𝑅) → ∃𝑓 : N→𝐴. dir(𝑅 ◦ 𝑓 )

OBDC2

𝐴 := ∀𝑅 : 𝐴2→𝐴→P.∃𝑓 : N→𝐴. tot(𝑅) ↔ tot(𝑅 ◦ 𝑓 )

B CONNECTIONS OF LOGICAL PRINCIPLES
See Figure 1 for an overview of our main results regarding DLS.
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Figure 1: Overview of Main Results
This figure summarises our decompositions of the DLS theorem. Solid arrows depict (strict) implications while the dashed arrows depict

combined equivalences. Double arrows depict direct equivalences with potential side conditions placed next to the arrows.
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